
Cell Physiol Biochem 2015;35:1719-1728
DOI: 10.1159/000373984
Published online: March 19, 2015

© 2015 S. Karger AG, Basel
www.karger.com/cpb 1719

Hu et al.: Stem Cell Conditioned Media and Albumin-Induced EMT 

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

1421-9778/15/0355-1719$39.50/0

Original Paper

Accepted: January 27, 2015

This is an Open Access article licensed under the terms of the Creative Commons Attribution-
NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to 
the online version of the article only. Distribution permitted for non-commercial purposes only.

 Copyright © 2015 S. Karger AG, Basel

Department of Pharmacology & Toxicology, Medical College of Virginia Campus, 
Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298 (USA)
Tel. +1-804-828-2071, Fax +1-804-828-4794, E-Mail nli@vcu.edu

Dr. Ningjun Li 

Stem Cell Conditioned Culture Media 
Attenuated Albumin-Induced Epithelial–
Mesenchymal Transition in Renal Tubular 
Cells
Junping Hua   Qing Zhua    Pin-Lan Lia    Weili Wanga   Fan Yib   Ningjun Lia

aDepartment of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, 
Richmond, VA, USA, bDepartment of Pharmacology, Shandong University School of Medicine, Jinan, 
Shandong, P.R. China

Key Words
E-cadherin • Fibroblast-specific protein 1 • α-smooth muscle actin • NF-κB

Abstract
Background: Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important 
role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has 
been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar 
beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM 
inhibits albumin-induced EMT in cultured renal tubular cells. Methods: Rat renal tubular cells 
were treated with/without albumin (20 µmg/ml) plus SCM or control cell media (CCM). EMT 
markers and inflammatory factors were measured by Western blot and fluorescent images. 
Results: Albumin induced EMT as shown by significant decreases in levels of epithelial marker 
E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and α-smooth 
muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, 
albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the 
nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor 
monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 fold compared with control. SCM 
almost abolished albumin-induced increase of MCP-1. Conclusion: These results suggest 
that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of 
inflammatory factors, which may serve as a new therapeutic approach for chronic kidney 
diseases. 

Introduction

Renal tubulointerstitial fibrosis is the major underlying pathology and the common end 
point of progressive renal diseases and that the accumulation of myofibroblasts producing 
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extracellular matrixes is a key element in the process of renal fibrosis [1, 2]. Emerging evidence 
indicates that renal tubular epithelial cells through epithelial to mesenchymal transition 
(EMT) is an important resource of fibrogenic myofibroblasts and plays an important role in 
renal tubulointerstitial fibrosis [3, 4]. During the transformation process of EMT, epithelial 
cells lose their specific epithelial markers and the cell-cell basement membrane contact, 
gain mesenchymal phenotypic changes, leading finally to spindle-shaped myofibroblasts [3, 
4]. It has been reported that approximately one third of myofibroblasts are not preexisting 
local fibroblasts but a result of EMT [4, 5]. Therefore, EMT plays a critical role during the 
progression of chronic kidney damage. 

Proteinuria is one of the strongest predictors for chronic kidney disease progression 
to end-stage renal disease [6, 7]. Evidence indicates that proteinuria may accelerate kidney 
disease progression to end-stage renal failure [6, 7]. Different mechanisms have been 
proposed for proteinuria-induced damages, including direct tubular toxicity, changes in 
tubular epithelial metabolism, stimulation of cytokines and chemokines and increased 
expression of adhesion molecules [7]. Production of proinflammatory factors by epithelial 
cells that are exposed to protein may be one of the major mechanisms. For example, it has 
been shown that protein induces the production of monocyte chemotactic protein (MCP)-1 
and transforming growth factor (TGF)-β, which are the most important proinflammatory 
and profibrogenic factors in the progression of chronic kidney diseases [7, 8]. Proximal 
tubular epithelial cells that were challenged with plasma proteins secreted chemokines, 
such as MCP-1 and RANTES, which in return simulated the influx of mononuclear cells into 
the interstitium [9, 10]. Moreover, albumin, the dominant protein in proteinuria, has been 
shown to induce EMT, probably through stimulating the pro-inflammatory factors [11, 12]. 
Thus, EMT contributes to proteinuria-induced progression of chronic kidney diseases.

Stem cell therapy has been used in the treatment of different forms of diseases [13]. It has 
been recognized that the beneficial effects of stem cell therapy are predominantly mediated 
by indirect paracrine mechanisms rather than direct differentiation and substitution of 
damaged cells [14-16]. Conditioned media obtained from stem cell culture have been shown 
to improve various pathological conditions [17-19]. Administration of conditioned medium 
from cultured stem cells provides the same renoprotective effects as injection of stem cells 
[16, 20].  As the use of stem cell therapy may present some risks to the patients, stem cell 
conditioned media (SCM) is considered a promising alternative to stem cell therapy [21]. 
The present study tested the hypothesis that SCM protects against albumin-induced EMT 
in cultured renal tubular cells. Our results showed that SCM inhibited the albumin-induced 
activation of pro-inflammatory factors and blocked albumin-induced changes in EMT 
markers.

Materials and Methods

Cell culture and preparation of SCM 
NRK-52E cells, a rat renal tubular cell line, were obtained from ATCC and cultured in the presence 

of  DMEM/Ham's F12 (DMEM/F12) medium supplemented with 10% fetal calf serum (FCS), glutamine (2 
mM), penicillin (100 IU/ml), and streptomycin (100 μg/ml). Cells were cultured at 37 °C in a humidified 
atmosphere of 5% CO2 in air. For EMT experiments, cells were treated with 20μg/ml rat albumin (Sigma) 
for 48 h; for NF-κB translocation experiments, cells were treated with 20μg/ml rat albumin for 3 h.

Mesenchymal stem cells (MSCs) were generous gifts from Texas A&M Health Science Center. Passenger 
7 MSCs were cultured according to the instruction in Eagle’s alpha minimum essential medium (α-MEM; 
Sigma), supplemented with 20% FBS (FBS, Invitrogen), 4mM L-glutamine (Invitrogen-Gibco), 100U/ml 
penicillin and 100ug/ml streptomycin (Invitrogen-Gibco). After 72 h, the medium was collected and used as 
stem cell conditioned media (SCM). The control conditioned media (CCM) were obtained from culturing rat 
renal medullary interstitial cells for 72 h using the same medium. Rat renal medullary interstitial cells were 
prepared as we described previously [22, 23]. In preliminary experiments, cells treated with CCM did not 
show significant difference in the EMT markers described below compared with naive cells.
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Western blot analysis
Whole cell protein and nuclear protein preparation, as well as western blotting, were performed as 

we described previously [24, 25]. For whole  protein, the membrane was probed with primary antibodies 
of anti-E-cadherin (rabbit polyclonal, R&D System, 1:1000), anti-α-smooth muscle actin (SMA) ( rabbit 
polyclonal, R&D System, 1:1000), anti-fibroblast specific protein (FSP)-1 (rabbit polyclonal, Abcam, 1:1000), 
anti-collagen I (rabbit polyclonal, Calbiochem, 1:1000) and anti-MCP-1 (rabbit polyclonal, Abcam, 1:500); 
for nuclear protein, the membrane was probed with  anti-NF-κB-p65 subunit  antibody (rabbit polyclonal, 
Abcam, 1:1000). The intensities of the blots were determined using an imaging analysis program (Image J, 
free download from http://rsbweb.nih.gov/ij/). The β-actin was used as internal control. The normalized 
values in different groups were averaged and expressed as fold change with the mean value of control group 
as 1.

RNA extraction and quantitative RT-PCR analysis
Total RNA was extracted using TRIzol solution (Life Technologies, Inc., Rockville, MD) and then 

reverse-transcribed (RT) (cDNA Synthesis Kit, Bio-Rad, Hercules, CA). The RT products were amplified using 
a TaqMan Gene Expression Assays kit (Applied Biosystems). A kit for detecting the levels of 18S ribosomal 
RNA was used as an endogenous control. The relative gene expressions were calculated in accordance with 
the ΔΔCt method. Relative mRNA levels were expressed by the values of 2-ΔΔCt.

Immunofluorescent microscopy
Cells were grown on glass chamber slides and undergone different treatments as described above. 

After fixation and permeabilization with 4% paraformaldehyde, cells were respectively incubated with 
antibodies of anti-E-cadherin, anti-α-SMA and anti-FSP-1 at 4°C overnight,  followed with Alexa Fluor 
555-coupled secondary antibodies at room temperature for 1 h;  for NF-κB translocation measurement, 
cells were incubated with anti-NF-κB primary antibody, Alexa Fluor 555-coupled secondary antibodies 
and then followed by incubation with YO-PRO®-1 (Life Technologies) for nucleic acid staining at room 
temperature for 1 h. At last, stained cells were mounted and subjected to examinations using a confocal laser 
scanning microscope (FluoView FV1000, Olympus, Japan). These experiments were performed to observe 
the changes of EMT markers in renal tubular cells. Integrated optical intensity (IOD) was calculated by 
using an Image-Pro Plus v6.0 software (MediaCybernetics, Silver Spring, MD). The IOD values in control 
group were averaged, and all the IOD values were normalized to the mean value of the control group. The 
normalized values in different groups were averaged and expressed as fold change with the mean value of 
control group as 1.

Statistics
Data were presented as means ± S.E.M. Significant differences between and within multiple groups 

were evaluated using an ANOVA followed by a Duncan’s multiple-range test. Student’s t-test was used to 
evaluate statistical significance of differences between two groups. P< 0.05 was considered statistically 
significant

Results

Effects of stem cell conditioned media (SCM) on albumin-induced changes in EMT markers
Cells were treated with 1) control culture media (CCM), 2) rat albumin + CCM, and 3) rat 

albumin + SCM. Western blot analysis showed that protein expression of epithelial cell marker 
E-Cadherin was much lower in albumin-treated cells than that in control cells, whereas its 
expression in SCM-treated cells were recovered to levels similar to that in control cells (Fig. 
1). In contrast, the protein levels of mesenchymal cell markers FSP-1 (Fig. 2) and α-SMA 
(Fig. 3) were both much higher in albumin-treated cells than that in control cells, whereas 
the levels of FSP-1 and α-SMA in SCM-treated cells were similar to that in control cells. These 
results indicated that albumin reduced epithelial marker and stimulated the mesenchymal 
markers and that SCM blocked the albumin-induced changes in EMT markers.
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Effects of SCM on the albumin-induced changes in the patterns of immunostaining in EMT 
markers
To further investigate the SCM effects on the albumin-induced EMT, immune staining 

analysis of EMT markers were performed in cells with different treatments. As shown in Fig. 4, 
immunostaining of E-Cadherin clearly outlined the cell contours with enriched fluorescence 
along cell membrane in control cells treated with CCM; in cells treated with albumin + CCM, 
the intensity of immunostaining was reduced and the contour of E-Cadherin staining was 
discontinuous; in cells treated with albumin + SCM, the contour of E-Cadherin staining was 
recovered and the intensity of immunostaining was significantly increased compared with 
that in cells treated with albumin. In contrast, the staining of mesenchymal cell markers 
FSP-1 and α-SMA were both weak in control cells treated with CCM (Fig. 4); in cells treated 
with albumin + CCM, the staining of both FSP-1 and α-SMA was much stronger than that in 
control cells; in cells treated with albumin + SCM, however, the staining of both α-SMA and 
FSP-1 was similar to the levels in control cells. These results additionally demonstrated that 
SCM blocked the albumin-induced changes in EMT markers.

Effects of SCM on the albumin-induced collagen-I expression
The collagen-I expression was significantly higher in albumin-treated cells than in CCM-

treated control cells. However, in cells treated with albumin + SCM, the levels of collagen-I 

Fig. 1. Effect of SCM on albumin-induced decrease 
in epithelial marker E-cadherin by Western blot ana-
lysis. Upper panel: Representative gel documents; 
Lower Panel: summarized data. Ctrl = control cells 
treated with CCM, Alb = cells treated with albumin 
+ CCM, Alb+SCM = cells treated with albumin + SCM.  
n=6 batches of cells, *P<0.05 vs. other groups.

Fig. 2. Effect of SCM on albumin-induced increase 
in mesenchymal marker FSP-1 by Western blot ana-
lysis. Upper panel: Representative gel documents; 
Lower panel: summarized data. Ctrl = control cells 
treated with CCM, Alb = cells treated with albumin 
+ CCM, Alb+SCM = cells treated with albumin + SCM. 
n=6 batches of cells, *P<0.05 vs. other groups.

Fig. 3. Effect of SCM on albumin-induced increase 
in mesenchymal marker α-SMA by Western blot ana-
lysis. Upper panel: Representative gel documents; 
Lower panel: summarized data. Ctrl = control cells 
treated with CCM, Alb = cells treated with albumin 
+ CCM, Alb+SCM = cells treated with albumin + SCM. 
n=6 batches of cells, *P<0.05 vs. other groups.
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protein were lower than that in albumin-treated cells, similar to that in CCM-treated control 
cells (Fig. 5). These data indicate that SCM inhibits albumin-induced expression of collagen-I, 
probably via actions on EMT.

Effects of SCM on albumin-induced nuclear translocation of NF-κB
NF-κB plays a key role in regulating inflammation. It has been reported that NF-κB 

is involved in TGF-β-induced EMT [26]. Our Western blot results showed that NF-κB-p65 
levels in nuclear protein were significantly higher in cells treated with albumin + CCM than 
in cells treated with CCM. However, the NF-κB-p65 levels were much lower in cells treated 

Fig. 4. Effect of SCM on albumin-induced changes of 
staining patterns in E-cadherin, FSP-1 and α-SMA by 
immunofluorescent microscopy assay. Upper panel: 
Representative confocal images showing the immu-
nostaining of E-cadherin, FSP-1 and α-SMA; Lower 
panel: Summarized integrated optical intensity of 
the fluorescent staining. Ctrl = control cells treated 
with CCM, Alb = cells treated with albumin + CCM, 
Alb+SCM = cells treated with albumin + SCM. n=5 
batches of cells, *P<0.05 vs. other groups.

Fig. 5. Effect of SCM on albumin-induced increase in 
collagen I by Western blot analysis. Upper panel: Re-
presentative gel documents; Lower panel: Summa-
rized data. Ctrl = control cells treated with CCM, Alb 
= cells treated with albumin + CCM, Alb+SCM = cells 
treated with albumin + SCM. n=6 batches of cells, 
*P<0.05 vs. other groups.

Fig. 6. Effect of SCM on albumin-induced increase in 
NF-κB-p65 in nuclear proteins by Western blot ana-
lysis. Upper panel: Representative gel documents; 
Lower panel: Summarized data. Ctrl = control cells 
treated with CCM, Alb = cells treated with albumin 
+ CCM, Alb+SCM = cells treated with albumin + SCM. 
n=6 batches of cells, *P<0.05 vs. other groups.
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with albumin + SCM than in cell treated with albumin + CCM, similar to that in CCM-treated 
control cells (Fig. 6).

Effects of SCM on albumin-induced NF-κB translocation into nuclei were further 
investigated by fluorescence confocal images. As shown in Fig. 7, NF-κB-p65 staining was 
mainly located in cytoplasm with a weak staining in nuclei in most of CCM-treated control 
cells, whereas most of nuclei showed a strong NF-κB-p65 staining in albumin + CCM-treated 
cells, indicating a nuclear translocation of NF-κB. Overlaid images showed a much stronger 
yellow color in the nuclei in albumin-treated cells than that in control cells, further indicating 
a nuclear translocation of NF-κB. However, staining pattern of NF-κB-p65 in cells treated 
with albumin + SCM was similar to that in CCM-treated control cells. These results were 
consistent with the above findings by western blot assay, further suggesting that albumin-
induced nuclear translocation of NF-κB were blocked by SCM treatment.

Effects of SCM on albumin-induced expression of monocyte chemotactic protein (MCP)-1
MCP-1 is one of the important inflammatory mediators. The levels of MCP-1 mRNA and 

protein expression were significantly higher in albumin-treated cells than that in control. 
However, in cells treated with albumin + SCM, the MCP-1 mRNA and protein expressions 
were much lower than that in albumin-treated cells, similar to that in CCM-treated control 
cells (Fig. 8). These data suggest that SCM inhibits albumin-induced activation of pro-
inflammatory factors.

Fig. 7. Effect of SCM on albumin-induced changes 
of staining patterns in NF-κB-p65 by immunoflu-
orescent microscopy assay.  Representative confocal 
images showing the immunostaining of nuclear mar-
ker (green) and NF-κB-p65 (red) (from 5 batches of 
cells). Control = control cells treated with CCM, Albu-
min = cells treated with albumin + CCM, Albumin+-
SCM = cells treated with albumin + SCM.

Fig. 8. Effect of SCM on albumin-induced increase in 
MCP-1. Upper panel: mRNA levels by real-time RT-
PCR analysis; Lower panel: Protein levels by Western 
blot analysis. Ctrl = control cells treated with CCM, 
Alb = cells treated with albumin + CCM, Alb+SCM = 
cells treated with albumin + SCM. n=4-6 batches of 
cells, *P<0.05 vs. other groups.
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Discussion

The present study demonstrated that SCM blocked albumin-induced loss of epithelial 
cell marker E-Cadherin and gain of mesenchymal cell markers α-SMA and FSP-1. The 
beneficial effects of SCM were associated with blocking the nuclear translocation of NF-
κB and abolishing the increase in pro-inflammatory factor MCP-1 induced by albumin. 
These data indicate that SCM blocks albumin-induced EMT in renal tubular cells via anti-
inflammatory actions.

Urinary protein, particularly albumin, is being recognized as a key mediator of renal 
tubulointerstitial injury in CKD [27]. It has been demonstrated that proteinuria is one of 
the most common inducer of tubular EMT [28, 29]. Given the important role of EMT in the 
progression of CKD, albumin-induced EMT in renal tubular cells used in this study may 
present a useful in vitro model for EMT and chronic kidney diseases.

Renal tubular epithelial cells have a low capacity of proliferation and migration. They 
undergo a dedifferentiation from epithelial cells into mesenchymal cells during renal injury. 
This dedifferentiation enables the cells to proliferate and migrate. In this dedifferentiated 
cells, the levels of the surface and cytoplasmic expression of α-SMA and signal transduction 
proteins of FSP-1, which are specially expressed on fibroblast in vivo, are increased [30-
32], whereas the expression of epithelial makers, such as E-cadherin, is repressed [32-34]. 
Therefore, the reduction in the expression of epithelial cell marker E-Cadherin and elevation 
in the expression of mesenchymal cell markers FSP-1 and α-SMA have been widely used as 
indicators for EMT [32, 34, 35]. To evaluate whether SCM would have any effect on albumin-
induced EMT in renal tubular cells, these EMT markers were examined in cells under different 
treatments in the present study. Our results showed that treatment of renal proximal tubular 
cells with albumin increased the expression of α-SMA and FSP-1, and suppressed E-cadherin 
expression, demonstrating that albumin stimulated EMT in renal tubular cells. Interestingly, 
in cells treated with albumin + SCM the changes in the above EMT markers were reversed, 
suggesting that SCM blocks albumin-induced EMT. 

Synthesis of extracellular matrix molecules, mostly collagen type I and type III, 
is a characteristic of fibrosis. It has been shown that collagen expression is increased in 
epithelial cells undergoing albumin-induced EMT [11, 12]. We then detected the expression 
of collagen-I to further evaluate the effect of SCM on albumin-induced fibrogenesis in renal 
tubular cells.  In addition to blocking albumin-induced changes in EMT markers, SCM also 
reversed albumin-induced increase of collagen-I expression, further verifying that SCM 
attenuated albumin-induced fibrogenic effect in renal tubular cells.

Inflammatory factors are associated with tubular EMT [36, 37]. Inflammatory factor 
NF-κB plays a critical role in the progression of CKD and renal fibrosis [38]. It has also 
been shown that NF-κB is an upstream mediator of EMT [26, 39, 40]. Inhibition of NF-κB 
attenuated EMT and fibrogenesis in renal tubular cells in vivo and in vitro [41]. We therefore 
determined whether SCM acted on NF-κB. Our results showed that albumin induced an 
activation of NF-κB, as indicated by the increased levels of NF-κB in nuclear protein and 
translocation of NF-κB from cytoplasm into nucleus, whereas SCM blocked albumin-induced 
NF-κB translocation from cytoplasm into nucleus. These data suggest that SCM attenuates 
albumin-induced EMT in renal tubular cells via inhibiting the activation of inflammatory 
factor NF-κB. Our findings are consistent with previous reports that stem cells and SCM 
possess anti-inflammatory prosperities [42-44].

Proteinuria can stimulate renal tubular cells to produce inflammatory factors that 
recruit immune cells to further produce EMT and damage the cells in vivo. MCP-1 represents 
one of such important cytokines to recruit immune cells and cause inflammation in vivo.  
Our results showed that SCM inhibited albumin-induced increase of MCP-1, further 
indicating that SCM acted on pro-inflammatory effects of albumin in renal tubular cells. On 
top of directly targeting tubular cells to inhibit EMT, SCM would possess additional anti-
inflammatory function in vivo to target the mobilization of immune cells by inhibiting 
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pro-inflammatory factors, such as MCP-1, which would inhibit inflammation and further 
attenuate EMT in vivo in CKD. 

It should be pointed out that there remain questions derived from the data in the 
present study. The present study just detected NF-κB and MCP-1 as representative samples 
associated with albumin-induced pro-inflammatory effects. Many other factors are also 
involved in albumin-induced EMT. SCM may act on other factors that mediate EMT as 
well. For example, TGF-β plays an important role in the progression of CKD [45] and that 
protein loading stimulates TGF-β in renal cells [7]. Whether SCM also inhibits TGF-β and 
other factors associated with CKD is worth investigating in the future studies. In addition, 
SCM contains a large number of various growth factors and cytokines that may contribute 
to the beneficial effects of SCM [46, 47]. What factors in SCM are responsible for the effects 
observed in the present study remain unanswered. This important and rather complicated 
question requires further investigation [46]. Furthermore, the findings in the present in vitro 
study require confirmation in vivo. It has been shown that intravenous or local injection of 
SCM improves different disease conditions [46, 48-50]. Similar approaches to examine the 
effect of SCM on the progression of renal diseases using in vivo models with proteinuria 
needs to be performed in the future. 

In summary, the present study demonstrated that SCM attenuated albumin-induced 
EMT, which was associated with inhibition of albumin-induced increase of pro-inflammatory 
factors and the activation of NF-κB. SCM or factors released in the SCM may serve as an 
approach to slow the progression of CKD by preventing the proteinuria-induced pro-
inflammatory factors and EMT. The results from the present study may also indicate that 
the functions of adult stem cells in the kidneys may constitute one of the mechanisms 
counteracting proteinuria-induced inflammation and EMT in CKD.
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